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Abstract. We report on the formation of stable rotating bound states consisting of self-organized well local-
ized solitary structures with particle-like behaviour in systems of reaction-diffusion type. These dissipative
solitons are detected in an experimental planar d.c. gas-discharge system with a high ohmic barrier, as
well as in numerical solutions of related three-component reaction-diffusion equations where the formation
of rotating bound states is investigated in the context of a particle ansatz.

PACS. 89.75.Fb Structures and organization in complex systems – 82.40.Ck Pattern formation in reactions
with diffusion, flow and heat transfer – 52.80.Tn Other gas discharges

Well localized self-organized solitary structures with
particle-like behaviour are commonly observed in nature.
In the case of dissipative systems we refer to them as dissi-
pative solitons (DS), following references [1,2]. They exist
in biological systems as nerve pulses [3], in chemical sys-
tems as concentration drops of chemical reagents [4–6], in
optical systems as intensity bulbs [7,8], and as current fil-
aments in semiconductor devices [9–11], or gas-discharge
systems [1,12–14]. The modelling of these nonlinear dis-
sipative systems often leads to reaction-diffusion equa-
tions [11,15–19] (in case of optical systems with cross-
diffusion terms [7,8]). Recent investigations have shown
that DSs are generic particle-like structures that can in-
teract with each other. Typical interaction phenomena ob-
served in experimental and theoretical systems are scatter-
ing, formation of molecule-like bound states, generation,
or annihilation [6,12,13,16,20–25].

In this article we report on the experimental observa-
tion of rotating bound states of dissipative solitons in a
planar d.c. driven gas-discharge system with a high ohmic
barrier. In order to understand the results phenomenologi-
cally from the point of view of pattern formation, we inves-
tigate the formation of rotating bound states in a related
three-component reaction-diffusion system, which has re-
cently been incorporated in the detection of the drift-
bifurcation of dissipative solitons in the pattern forming
gas-discharge system [14,26].

a e-mail: obi@uni-muenster.de
http://www.uni-muenster.de/Physik/AP/purwins/struktur

The experimental system [27] is a variant of the elec-
tronic device initially designed for the high speed conver-
sion of infrared images to the visible [28]. Essentially, it
consists of two planar electrodes, one of which is a semi-
conductor wafer made of silicon doped with zinc. The
other electrode consists of ITO (indium tin oxide) de-
posited on a glass substrate, which is transparent with
respect to visible light (for parameters of the system see
Fig. 1). In order to provide a high Ohmic cathode the
semiconductor is cooled. The current of the system can
be easily controlled by varying the d.c. feeding voltage U0,
or alternatively, adjusting the specific conductivity of the
semiconductor wafer via the internal photoeffect by proper
illumination of the wafer. If the value of U0 is high enough,
a self-sustained gas discharge is ignited. It turns out that
the luminance emitted from the discharge space is pro-
portional to the current density in the gap [27]. In this
way, the information about the current density can be
obtained by recording the luminance using commercial
CCD cameras.

For proper parameters of the experimental system, sta-
tionary clusters of DSs [19], or patterns composed of a
small number of moving DSs [12], may be generated in the
device. In the present study, we concentrate on the inves-
tigation of bound states of two DSs which rotate around
the center of the cluster. An example of this dynamical
pattern is represented in Figure 1. This pattern is gener-
ated by taking advantage of the self-completion scenario
described in [19], for example. Thereby, starting from a
state with one DS, the global current is increased until
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Fig. 1. Luminance distribution from the discharge gap of the
gas-discharge system. The whole series represents a rotation of
approximately 180◦. The parameters are the following, gas: N2,
gas pressure: 2.0×104 Pa, semiconductor: Si〈Zn〉, semiconduc-
tor temperature: 90 K, thickness of gas layer: 0.8 mm, thickness
of semiconductor wafer: 1.0 mm, specific conductivity of wafer
4.5 × 10−8 Ω−1cm−1, overall supply voltage: 1.9 kV, resistor
included into the circuit in series: 5.0× 106 Ω, diameter of the
active gas space: 20 mm, additional characteristic of the mea-
surement: global current: 3.2 µA, exposure time for a frame is
less than 1 msec, size of the presented domain: 9 × 9 mm2.

a second DS is ignited in the neighbourhood of the ini-
tial one. In the case of Figure 1 this pair of DSs, or this
“molecule”, as we may call it, is a stable pattern which ro-
tates counterclockwise. We remark that a further increase
of the global current leads to the appearance of additional
DSs, whereas a more complicated dynamical behaviour
can be observed as a consequence of the interaction be-
tween DSs.

In Figure 2a we plot the x-coordinate of the upper
right DS of Figure 1a, which is x1(t), as a function of time
for five periods of the rotation, thereby revealing a pe-
riodic behaviour. In each period the same characteristic
deviation from sinusoidal motion is visible, indicating the
influence of spatial inhomogeneities. The time dependence
of the distance db(t) between the centers of the individ-
ual DSs is depicted in Figure 2b. We observe that db(t)
varies periodically with half the period of x1(t). This cor-
relation is due to the fact that both DSs are identical and
are therefore identically influenced by both spatial inho-
mogeneities and boundaries. In Figure 2c the x-coordinate
of the center of the molecule, defined as xc(t), is shown.
It reveals a periodic dependence on time with characteris-
tic fine structure which is correlated to the fine structure
of Figure 2a. Furthermore, we observe that the periodic
motion of the center is accompanied by strong changes in
the angular velocity ω(t) (Fig. 2d).

In summary, we may state that the experimental re-
sults prove the existence of stable rotating pairs of DSs.
Such a behaviour is different from that revealed in [12,29],
where bound states of DSs have been observed in tran-
sient. The angular velocity is not constant, an effect that
we attribute to the influence of spatial inhomogeneities in

Fig. 2. Dynamical behaviour of the rotating pair of DSs shown
in Figure 1. Gray vertical lines clarify the connection between
some discontinuous changes of the slopes of curves shown in
parts (a)-(d). (a) Projection of the position of an individual
DS on the x-axis. (b) Distance db(t) between the two DSs of
the bound state. (c) Projection of the center of the bound state
on the x-axis. (d) Angular velocity ω(t) of the bound state.

the device, presumably, in the semiconductor wafer. Due
to the fact that the distance between the DSs within the
cluster is relatively small with respect to the diameter of
the active gas space, we assume that the boundary does
not effect the dynamical behaviour of the cluster. This is
in contrast to rotating periodic patterns whose dynamics
is determined by the geometry and the boundaries of the
domain [30–35].

To interpret the occurrence of rotating bound states
of DSs in the experimental device, we recall that for
such systems a phenomenological qualitative activator-
inhibitor reaction–diffusion model has been proposed [36].
In this model the activating component is related to
the avalanche multiplication of charged carriers in the
gap, while the voltage drop at the semiconductor plate
plays the role of the inhibitor. Two-component reaction-
diffusion models allow for the qualitative understanding
of many stationary patterns in planar d.c. gas-discharge
systems, and other extended dissipative systems, e.g. Tur-
ing structures [18,27,37,38], stationary DSs [1,17,39,40]
and their bound states [18,41]. Such models were also
used to investigate moving DSs in more than one spa-
tial dimension [42,43], whereas a single moving DS could
be stabilized by a global feedback term. However, as it
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was discussed in references [16,44], the global feedback
term cannot suppress the growth of antisymmetric com-
binations of the unstable modes of two distinct DSs [45].
Another work [46] shows analytically that a moving two-
dimensional DS exists, in principle, in a delicate limiting
case of the standard FitzHugh-Nagumo model. Neverthe-
less, this result has not been confirmed by numerical sim-
ulations. The difficulties of this approach can be easily
overcome by introducing a second inhibiting component
in a phenomenological manner, so that the description
of multiple stable moving DSs becomes possible [16]. In
the context of planar d.c. gas-discharge systems, such a
component can be related to the voltage drop at a gas
region close to one of the electrodes [47]. Therefore, in
the present analysis we apply a three-component reaction-
diffusion system with one activator and two inhibitors [44]:

ut = Du∆u + λu − u3 − κ3v − κ4w + κ1, (1)

τvt = Dv∆v + u − v, (2)

θwt = Dw∆w + u − w, (3)

u = u(�r, t), v = v(�r, t), w = w(�r, t), �r ∈ Ω ⊂ R
2,

Du, Dv, Dw, τ, θ, λ, κ3, κ4 ≥ 0.

Investigations of equations (1–3) in the parameter limit
Dv → 0 and θ → 0 have shown that stable stationary
DS solutions undergo a supercritical bifurcation to mov-
ing DSs at τc = 1

κ3
[48], thereby loosing their spherical

symmetry, which is an analog to spontaneous parity break-
ing [49,50]. The same holds for bound states of dissipative
solitons, which can undergo a transition to rotation or
translation at τc [16]. Note, however, that the situation is
more difficult for θ > 0. For this case, and that concerning
a bound state of two dissipative solitons it has been shown
that the bifurcation point of the rotational bifurcation of
the bound state is smaller than the drift bifurcation point
of the bound state, which in turn is smaller than the drift
bifurcation point of the unbound dissipative soliton [51,
52].

Here we focus on the parameter limit Dv → 0 and θ →
0, for which unbounded DSs for τ > τc move with an
intrinsic velocity given by:

c0(τ) = κ
3
2
3

√
τ − τc

Q
(4)

[14], where Q is a scalar shape factor obtained from the
radial activator distribution ū(r) of a stationary circular
symmetric DS solution as such:

Q =
3
4

∫ ∞

0

dr
(
ū2

rrr + ū2
r/r

)
∫ ∞

0

dr ū2
rr

. (5)

Near the onset of propagation, τ = τc, the dynamics of
DSs can be reduced by means of a perturbation approach

to a set of ordinary differential equations for the positions
of the DSs �pi(t), and the vectors �αi(t) which represent
the shift between the centers of activator distribution u
and centers of slow inhibitor distribution v for each sin-
gle DS [16]. We note that �αi(t) �= 0 is the origin of the
motion of DSs, and is referred to as the amplitude of the
propagator mode. The dynamics for two interacting DSs
are described by

�̇p1 = κ3�α1 − F (d) (�p2 − �p1) , (6)

�̇α1 = κ2
3

(
τ− 1

κ3

)
�α1−κ3Q |�α1|2 �α1−F (d) (�p2−�p1) , (7)

�p1, �α1 ∈ R
2,

with an equivalent set of equations for the second DS.
The scalar interaction function F (d) depends on the dis-
tance d = |�p2 − �p1| between the DSs and, like the scalar
shape factor Q, can be easily computed from a stationary
DS solution [16]. That is to say, the complicated dynamics
of multiple moving DSs can be described and understood
using the dynamics of individual interacting particles with
an intrinsic velocity. Comparison between the dynamics
of DSs computed from the field equations (1–3) and that
obtained from the reduced dynamics (6–7) near the bi-
furcation point (τ � τc), show good agreement [16,53].
Note, that for τ ≤ τc the DSs are stationary and can only
start to move from mutual interactions [41]. For large dis-
tances d, the interaction function F (d) vanishes, and for
τ > τc the DSs move with their intrinsic velocity (4). In
this context, we note that we can vary the intrinsic ve-
locity c0(τ) as a function of relaxation time τ of the slow
inhibitor v.

Solutions to equations (1–3) are computed numerically
using a Crank-Nicholson time stepping scheme with con-
stant discretization in space and time and a red-black
Gauß-Seidel iteration with successive over-relaxation. The
equation of the fast inhibitor w, equation (3), is treated
with a multigrid solver in the parameter limit θ = 0 [23].

In order to investigate the formation of the rotating
bound states of the DSs, we have chosen parameters which
provide DS solutions with tails which decay in an oscilla-
tory manner towards the homogeneous background state.
This leads to an interaction function which also shows
oscillatory behaviour with attractive (F (d) < 0) and re-
pulsive (F (d) > 0) regions of interaction [16,41]. For the
parameters given in the caption of Figure 3, the interac-
tion function F (d) can be approximated by the following
fitting function

F (d) = −6.87× 10−4

d3/2
e−15.7 d cos(43.15( d− 0.199)), (8)

which is calculated from the activator distribution of a
stationary DS solution [16,54]. The reduced description,
equations (6–7), of the dynamics of the DSs provide a
powerful tool for investigating the interaction of DSs in
a fast and convenient way. This is because the infinite
number of degrees of freedom of the field equations (1–3)



202 The European Physical Journal B

Fig. 3. Stable rotating bound states of DSs in a three-
component reaction-diffusion system. (a) Solutions of the
reduced dynamics (6–7) for varied time scale constant τ ,
varied impact parameter ξ and initial conditions �p1,0 =
(−0.4, ξ), �p2,0 = (0.4,−ξ), �α1,0 = (c0(τ )/κ3, 0), and �α2,0 =
(−c0(τ )/κ3, 0), computed with the interaction function (8) and
using Q = 1950 [16]. (b) Difference of activator u and slow in-
hibitor v distributions corresponding to (τ, ξ) = (3.35, 0.02) ∈
BI, which illustrates the initial shifts α1,0 and α2,0 between
the centers of activator distribution u and slow inhibitor dis-
tribution v for the left and right DS. Dark (light) colors de-
note regions of u > v (u < v), respectively. The image also
shows two pairs of trajectories computed from solutions of
the field equations (1–3), leading to the formation of two dif-
ferent counterclockwise rotating bound states, which are de-
picted in (c) and (d). (c) Activator distribution u of a coun-
terclockwise rotating bound state computed from the initial
conditions depicted in (b), with binding distance dI = 0.164
and angular velocity ωI = 5.44 × 10−3. (d) Activator dis-
tribution u of a counterclockwise rotating bound state com-
puted from (τ, ξ) = (3.35, 0.174) ∈ BII, with binding dis-
tance dII = 0.320 and angular velocity ωII = 2.90 × 10−3.
Equations (1–3) are solved with parameters Du = 1.1 × 10−4,
Dv = 0, Dw = 9.64 × 10−4, λ = 1.01, κ1 = −0.1, κ3 = 0.3,
κ4 = 1, θ = 0 on a domain [−1, 1]× [−1, 1] with no-flux bound-
ary conditions, and a discretization of ∆x = 5 × 10−3 and
∆t = 0.1.

are reduced, in our case, to four degrees of freedom per
soliton on a two-dimensional domain.

We now want to find out under which conditions the
rotating pairs of DSs form. This may depend on the pa-
rameter τ , and in addition on the initial conditions, which
are parameterized by an impact parameter ξ, such that
two DSs start far away from each other (d ≥ 0.8) with
anti-parallel velocity vectors (see caption of Fig. 3). We
now solve equations (6–7) for various time scale constant τ
and impact parameter ξ in the two-dimensional parame-

ter interval τ × ξ = [τc, 3.51] × [0, 0.2], using a fifth or-
der Runge-Kutta-Verner method. The results are shown
in Figure 3a, where the shaded area denotes the forma-
tion of rotating pairs of DSs. We find a large area BI and a
smaller one BII. The area BI does not reach the ξ = 0 axis.
This limiting case leads to the formation of non-rotating
bound states [16]. In order to visualize the difference be-
tween the states corresponding to regions BI and BII,
we have chosen one parameter pair (τ, ξ) from each of
the parameter ranges BI and BII, and solved the field
equations (1–3) with corresponding initial conditions. The
results of these simulations are shown in Figure 3b as tra-
jectories of the center coordinates computed from the acti-
vator distribution u of the respective DS. The trajectories
show the formation of two different rotating bound states
each one consisting of two DSs with binding distances
dI = 0.164 and dII = 0.320, which are slightly larger than
the corresponding roots of the interaction function F (d)
at d0,I = 0.162 and d0,II = 0.308.

Momentary activator distributions for the resulting ro-
tating bound states are shown in Figures 3c and 3d. The
counterclockwise rotating bound state of Figure 3c is re-
sult of the initial conditions visualized in Figure 3b corre-
sponding to (τ, ξ) ∈ BI. This bound state can only form
if the DSs are fast enough to overcome the repulsive in-
teraction for d ∈ [0.235, 0.308], with F (d) > 0. On the
other hand, if they are too fast (τ > 3.494), the attractive
force is not strong enough to compensate the “centrifugal
forces”, and rotating bound states cannot exist. We should
note, that for many particle interactions of fast moving
DSs (τ � 3.41), additional phenomena such as generation
and annihilation of DSs are observed, which are, however,
beyond the scope of the reduced dynamics approach [23].

Because of the exponentially decaying interaction func-
tion F (d), the attractive interaction between DSs at a
binding distance dII is much weaker than it is at dI. There-
fore, the second bound state can only form for relatively
small velocities, i.e. for τ < 3.353 in our case. Figure 3d
shows an example of this bound state computed by solving
the field equations (1–3) numerically, using initial condi-
tions (τ, ξ) ∈ BII. In this case, the DSs are fast enough
to overcome the repulsive region d ∈ [0.308, 0.380], but
are slow enough to be captured by the attractive inter-
action at a binding distance dII. Within a small inter-
val τ ∈ ∆τI,II = [3.350, 3.352], both rotational bound
states can be reached. This interval clearly denotes bista-
bility of the system in the sense that two independent DSs
may form two different rotating states in the course of
their interaction. This result is proved by solving the field
equations (1–3), presented in Figures 3c–3d, which have
been computed using τ = 3.35 and values of ξ according
to BI and BII.

We have presented experimental and numerical inves-
tigations of the rotating bound states of two DSs. These
bound states consist of individual DSs, which, to a large
extent retain the free soliton properties. Such localized
self-organized solitary dissipative patterns are character-
ized by well defined binding distances of the DSs, and,
in principle, rotate with constant angular velocity. The
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deviation from constant angular velocity observed in the
experiment is attributed to spatial inhomogeneities. For
the numerical investigations we have used two approaches:
the first based on the field equations (1–3), and the sec-
ond where these equations are reduced to a system of or-
dinary differential equations with a small number of com-
ponents. The numerical results from both approaches are
in good agreement. Recently, rotating bound states of two
localized states were also reported in the vector complex
Ginzburg-Landau equation [55], where a single localized
state is stationary in the absence of the other one. In con-
trast, the DSs investigated in the present work move with
an intrinsic velocity, which is crucial for the formation
of the rotating bound states. Finally, we want to remark
that the formation of rotating clusters of more than two
DSs can be easily understood on the basis of the results
presented here.
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